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Abstract

This paper reexamines the notion of closed loop carrier phase synchronization
motivated by the theory of maximum a posteriori (MAP) phase estimation with
emphasis on the development of new structures based on both maximum-
likelihood (ML) and average-likelihood (AL) functions. The criterion of
performance used for comparison of all the closed loop structures discussed is the
mean-squared phase error for a fixed loop bandwidth. For low SNR applications, a
closed loop structure motivated by a particular interpretation of the ML function is
shown to outperform the so-called I-Q MAI? estimation loop which is motivated by
AL considerations and which itself outperforms other well-known loops such as the
I-Q Costas loop and I-Q polarity-type Costas loop.

‘This work was performed by the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.
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1.0 Introduction

It is well known [1] that estimation of an unknown parameter based on a likelihood
function approach is optimum in the sense of maximizing the ~ posteriori probability
of the parameter given the observation. For the case where the unknown parameter is
the random phase of a carrier received in a background of additive white Gaussian
noise (AWGN), optimum open loop structures have been derived for implementing
the resulting phase estimate [2,3]. Herein, these structures are referred to as open loop
carrier phase estimators.

When the carrier is unmodulated and its frequency is known, then its phase is
the only unknown parameter. As such, the optimum phase estimate is obtained by
first evaluating the a posteriori probability of the carrier phase given an observation of
the received carrier plus noise and then finding the value of carrier phase (often called
the maximum a posteriori (MAP) phase estimate) that maximizes this function. Since
when the carrier phase is unknown, it is assumed to be uniformly distributed in the
interval (-z,z), then from Bayes’ rule one can equivalently maximize the conditional
probability density function (pdf) of the observation given the carrier phase. The phase
estimate that results from this maximization is usually called the maximum-likelihood
phase estimate. For reasons that will become apparent shortly, we shall reserve this
terminology for another meaning.

When the carrier is data-modulated, then the above conditional pdf depends, in
addition, on the data sequence that exists during the interval of observation for the
received signal. Hence, before maximizing this function with respect to the carrier
phase, one has to choose how to eliminate its dependence on the unknown data
sequence, If one is only interested in determining the optimum carrier phase estimate,
then the appropriate choice is to average the conditional pdf over the unknown data
sequence. We shall refer to the phase estimate obtained by this process as the auerage-
Iikelihood  (AL) estimate. If, however, one is interested in joint phase estimation and
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data detection, then the appropriate choice is to first maximize the conditional pdf with
respect to the data sequence (resulting in the most probable sequence), and then
maximize it with respect to the carrier phase. 1 We shall refer to the phase estimate
obtained by this process as the maximum-likelihood (ML) estimate. 2 It has often been
conjectured, although never proven, that from the standpoint of phase estimation
alone, the ML phase estimate is suboptimum to the AL estimate. Because of this, what
is typically done in practice is to derive the AL carrier phase estimate and then use this
estimate as the phase of a demodulation reference signal for performing bit by bit data
detection. However, it should be understood that, from the standpoint of jc)int
estimation of data and carrier phase, this sequential operation of first deriving the
carrier phase estimate in the absence of any knowledge of the data (the AL approach)
and then detecting the ensuing data using the phase estimate so derived is, in general,
suboptimum.

Aside from the optima lit y of the AL and ML approaches to open loop estimation
of carrier phase, likelihood functions have also been used as motivation for closed loop
carrier phase synchronization. Emphasis is placed on the word motivation since
indeed there is no guarantee that the resulting closed loop schemes are optimal nor can
one guarantee that those schemes motivated by the AL approach will outperform those
motivated by the ML approach (although typically this turns out to be the case).
Nonetheless, as we shall see, closed loop carrier phase estimation schemes motivated
by likelihood functions do indeed yield good tracking performance (as measured by the
mean-squared value of the loop phase error). In fact, under suitable assumptions,
many of them are synonymous with well-known carrier tracking loops, e.g., the 1-Q
Cosfas loop and the 1-Q decision feedback or polarity-type Cosfas  loop [4,5] that have been
around for many decades.

It is the intent of this paper to explore in more detail the structure and
performance of closed loop carrier phase synchronization loops motivated by
likelihood functions. Before proceeding with the mathematical details, it is important
to define the meaning of the term “closed loop phase estimation scheme motivated by
the likelihood function approach.” As stated above, in the open loop case, the
optimum phase estimate is that value of carrier phase that maximizes the conditional

1 In principle, the order of maximization operations could be reversed.
21n the strictest of parlance, both the AL and the ML phase estimates are maximum-likelihood
estimates since the term “maximum-likelihood estimation” is typically reserved for estimating a
purely unknown (uniformly distributed) random parameter. However, to allow for distinguishing
between the two different ways in which the data sequence is handled, we shall  use the above
terminology.
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pdfof thereceived observation given the carrier phase. Analternate wayof saying the
same thing is that the optimum open loop phase estimate is the “value of phase at
which the derivative of this same conditional pdf equates to zero. Using this
interpretation of the optimum phase estimate, we make the observation that in the
neighborhood of this zero slope point, the magnitude and polarity of the conditional
pdf’s derivative would respectively represent an indication of how far away and in
which direction (i.e., less than or greater than) one is from the true optimum phase
estimate. As such, it is suggested that the derivative (or some monotonic function of
derivative) of the above conditional pdf be used as an error signal  in a closed loop phase
estimation scheme. It is in this context that we talk about closed loops motivated by
likelihood functions. Herein, for the purpose of abbreviated notation, we shall refer to
such loops as AL and ML closed loops depending on the particular likelihood function
used to define the error signal.

It is important at this point to mention that the notion of closed loops based on
likelihood functions as per the above definition is indeed not new and one should not
attribute its originality to the authors of this paper. Rather the purpose of this paper is
to expand upon this notion and present some new loops motivated by likelihood
functions along with their tracking performance. As such, we are not reinventing the
wheel but rather adding some more spokes to it.

2.0 System Model

Consider a system that transmits BPSK3 modulation over an AWGN channel.
As such the received signal takes the form

r(t) = @d(l) sin(toCl + f?) + n(l) (1)
where S denotes the received power, ~c is the carrier frequency in rad/see, 0 is the
unknown phase assumed to be uniformly distributed in the interval (-z, z), n(t) is an
the AWGN with single-sided power spectral density No watts/Hz, and d(t) is a
binary-valued (~1) random pulse train defined by the rate 1/T binary data sequence
(di) and the rectangular pulse shape, p(t), as

{

1;  ()<f<~
d(f) = ~dip(t - m),  p(f)= o. ~thewise

i=-- 9

(2

For an observation interval of L bits [we assume without loss of generality the interval
3We restrict ourselves to the case of binary modulation. By a straightforward extension of the
procedures discussed, the results can easily be extended to M-ary  modulation.
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(O, LT)I, the conditional pdf of the received signal (observation) given the unknown
phase and the particular data sequence, di, transmitted in that interval is easily shown
to be

[J2~ LTp(r(t)ldi(?),  O)= COexp ~
1

~ r(?)di(t)sin(co,l  +e)df 4qi(6)
o

(3)
1,

where di(f) is the transmitted waveform corresponding to the transmitted sequence in
accordance with (2) and Co is a constant of proportionality. To proceed further, we
must now choose between AL and ML approaches,

3.0 Closed LooPs Motivated bv the AL Approach
3.1 Structures

Suppose that we are interested only in estimating the carrier phase, 8. Then, as
previously mentioned, the appropriate approach is to average p(r(t)ld, (t), 8) over all
possible (2L) and equally likely data sequences yielding the conditional pdf

(4)
where Cl is again a constant of proportionality. One AL open loop phase estimate
(herein referred to as AL open loop estimator #l) is obtained by finding the value of O
that maximizes q(0) of (4), i.e.,

(5)

where the inverse
maximizes /(0). A
Figure la,

maximum notation “max-l ~(d)” denotes the value of () that
block diagram implementation of this estimator is illustrated in

Alternately, breaking up the integration over the entire observation into a sum
of integrals on each bit interval and recognizing that the data bits are independent
identically distributed (iid) binary random variables, then (4) evaluates to

L-1

[J

z~ (k+l)T
d~(f)t~) =  cz~cosh —No ‘T 1

r(f)sin(wct + O)dl ~v(e)
k=O

(6)

A second AL open loop phase estimate (herein refer;ed to as AL open loop estimator #2)
is obtained by finding the value of O that maximizes v(O) of (6), i.e.,



(~z~  (k+l)T
6sma$-1  fic~~h _

NO kT
r(?) sin(cOCt + O)df

1
(7)

k=O

A block diagram implementation of this estimator is illustrated in Figure lb.

Finally, one could obtain an AL open loop estimator by maximizing any
monotonic function of v(0), for example in v(O). The reason for choosing the natural
logarithm as the monotonic function is to simplify the mathematics, i.e., to convert the
L-fold product in (7) to an L-fold sum. Thus, the third AL open loop phase estimate
(herein referred to as AL open loop estimator #3) is obtained by finding the value of 6
that maximizes In v(O), namely,

b~ma~-~ ~ln cosh(J
* ~~+1)~ r(f)  sin(ocf + $)df

)
(8)

k=O

A block diagram implementation of this estimator is illustrated in Figure lC and is the
form most commonly found in discussions of open loop MAP carrier phase estimation.

Before proceeding to the AL closed loop structures, it is important to emphasize
that the three AL open loop phase estimates as described by (5), (7), and (8) are identical.
That is, even though the functions q(0), v(O), and in V(8) are totally different, the
values of O at which each achieves its maximum are all the same. Thus, from the
standpoint of finding the optimum open loop phase estimate, it makes no difference
which of the three structures in Figure 1 is implemented, i.e., they all yield the same
performance. As we shall see shortly, this same statement is not true when
considering the performances of the closed loops motivated by these three different AL
formulations. Stated another way, optimally equivalent open loop phase estimates
produced by equivalent AL functions
closed loop phase tracking structures.
#3, optimality of the open loop phase
closed loop structure.

do not necessarily produce optimally equivalent
In fact, for a given AL formulation, e.g., #1, #2, or
estimator in no way guarantees optimality  of the

A closed loop phase synchronization structure 4 based on AL open loop
estimator #1 is illustrated in Figure 2a where, in accordance with the discussion given
in the introduction, the error signal, e, is given by [see Eq. 6)]

4For ease of illustration, we show only the portion of the closed loop that generates the loop error
signal which in the actual implementation becomes the input to the loop filter.
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~ ~ (L-2M)eXp{(Rd(3L -4m)} 2 ‘=
m.()

where

and

L-1 L-1

Di z ~dkdik, Du = ~dtidjk
k=O k=O

with

d~(do, all,.. .,dL_l ) = transmitted

.

(12)

(13)

(14)

data sequence

di~(dio,  dil,..., di,~_l ) = ith data sequence; i=l,2 ,...92L (15)
In (12), D i represents the correlation of the ith data sequence with the transmitted
sequence and D i~ represents the correlation between the ith and the jth data
sequences. Some properties of Di and Di~ that are particularly useful in obtaining
many of the results that follow are summarized in Table 1, The factor SL represents the

loss of the effective loop SNR, p’g o;’, relative to the loop SNR, p, of a phase-locked
loop (PLL). For certain configurations, as we shall see, this loss is synonymous with
what is commonly referred to as squaring loss [4, 8].

At first glance, it might appear that, for given values of p , Rd, and the
observation length; L, the mean-squared phase error would be a function of the
particular sequence chosen as the transmitted sequence. It is easy to show that indeed
this is not the case, i.e., ~ is independent of the sequence selected for d .6 To see this,

consider a sequence d, ~(dlo,  dll,.. ., dl,~_l ) # d and rewrite Di and Dij as

6For convenience of evaluation of (12), we may choose the all 1’s sequence for d in which case Di
L-1

simplifies to ~tfti which takes on values L- 2rn, M = O, 1, 2, . . . . L,
k=O
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~ dq(8)—-.=~(.x,(~J~
))[ ~

2~ LTe
d6J

r(t)d, (t)sin(@Ct  +  e)df —
NO O

r(t)d, (r)cos(o-)Ct + 8)df
i=l )

(9)
Analogous closed loop phase synchronization structures corresponding to AL open
loop estimators #2 and #3 are illustrated in Figures 2band 2cwhere the error signals are
respectively given by [see Eq. (7)and (8)1

e A dv( e)=—=ficosh[~~~~+l)Tr(t) sin(oct  +@)dr)
d e k=O

:Yf~'(+J::+1'''(t)sin(@cf+e)d~))[*J:;+''T~(t).os(@ct+ w,
o 0

(lo)
and

e4dlnv(f3)  = ~-’
dO x

k=O
[~

~nh 2@ (k+lYf

))( ~

2@ (h+l)i”
No kT

r(t)sin(co,t+tl)dt  —
NO kT

~(f) COS(COc/  + O)df
1

(11)
The particular implementation of Figure 2C is what is commonly called an I-Q MAP
estimation loop [6, 7]. The special cases of Figure 2C wherein the hyperbolic tangent
nonlinearity is approximated by linear and hard limiter devices, corresponding
respectively to low and high signal-to-noise ratio (SNR) conditions, are commonly
called the I-Q Costas loop [4] and I-Q polarity-type Costas loop [5]. For simplicity of
notation, we shall refer to the three closed loop structures in Figure 2 as AL c~osed loop
#l, #2, and #3.

3.2 Performance

In assessing the performance of one closed loop scheme versus another, one
must be careful to normalize the loop parameters so as to allow a fair basis of
comparison. In this paper, the comparison will be made on the basis of mean-squared
phase error, ~, for a fixed loop bandwidth, BL . This is the typical measure of
performance use to describe a closed loop phase synchronization structure when it is
operating in its tracking mode.

An analysis of the closed loop performance of Figure 2a results in an expression
for the mean-squared phase error given bys

‘All of the performance results given in this paper will be based upon the so-called linear  theory

[3] which assumes that the loop operates in a region of high loop SNR.
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(16)
where d; = dkdlk represents the kth element of some other possible transmitted

,s
sequence d’~(do, all,..., d~.l ) and d~ = dtidti, dj~ = dudjk are the kth elements of two other
possible sequences dj ~(d~o,djl,..  .,d~,L_l) and d;. ~(djo,djl,..  .,dj,L_l), respectively. Since, in
general, d’# d and since the summations on i and J in (12) range over all possible (2~)
sequences, then substitution of (16) into (12) shows that ~ evaluated for a transmitted
sequence equal to d’ is identical to that evaluated for a transmitted sequence equal to d.

Special cases of (12) corresponding to L = 1,2, and 3 are given below:

[1

1 e*R’ -1
$ =— L=l

p (ew _ ~-%)2 ;

‘[ 14=A “’R’+ 2e8R’-3 ; L=2
P (e% _ ~-%)2

[

< =  ~ ‘u”  +  5e”R’  +  3e8R’ -9
P (e9~~ + es% _ e% _ e-a~~ )21

; L = 3

(17)
Figure 3 is a plot of S~ (in dB) ‘versus Rd (in dB) corresponding to the three cases in
(17). We observe that the performance of AL closed loop #1 as implemented in Figure
2C is clearly a function of the observation length of the corresponding open loop
estimator that motivated the structure.

For large Rd, it is straightforward to show that o; has the asymptotic behavior

~ Z -!-e*MJ + SL ~ e-2W (18)
P

For small Rd, ~ has the asymptotic form

()+~~ + S~ z 2R~
P 2R~

which is independent of L.

(19)
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Looking at (18) and Figure 3, one gets the impression (and rightfully so) that the
mean-squared phase error of AL closed loop #1 becomes unbounded as R~ + 00. This
singular behavior can be traced to the fact that the 2@/ NO coefficient preceding the
integral in the definition of q(0) given in (4), which becomes the weighting coefficient
of the two integrate-and-dump (I&D)  circuits in the closed loop of Figure 2a, becomes
unbounded as R~ +00 (NO + O). Suppose instead that we were to replace this
coefficient by an arbitrary constant, say KO, both in the definition of ~(e) given in (4)
and the closed loop motivated by this function, i.e., Figure 2a. From the standpoint of
open loop estimation of 0, AL open loop estimator #1 as defined by (5) with now
2@/ NO replaced by KO would remain unchanged. That is, the choice of the weighting
cons fan t preceding fhe L -bit integration has no effect on the open loop est irnate. On the other
hand, the choice of this weighting coefficient for the closed loop scheme has a very
definite bearing on its performance. In particular, with 2@/ NO replaced by KO in
Figure 2a, the mean-squared phase error, previously given by (12) now becomes

gl
PSL

(20)

where we have further normalized the weighting coefficient as K ~(~)KoT.  Note
that if we set .0 =2@ /NO as before, then K = 2R~ and (20) reduces to (12).

From (20), we see that as long as .0 (or equivalently K) is finite (which would be
the case in a practical implementation of the AL closed loop scheme), the large SNR
asymptotic behavior of AL closed loop #1 now becomes

[

L~~Dv exp{.(~i + ~j)}
NOBLlim ~ = Jl~O— i=l j=l

21

=

[ ( )

o (21)
R,+-

S  ~ ~ (L-2rn)exp{K(L-  2rn)}
m-o m 1

which is what one would expect. What is interesting is that, for any value of Rd, the
value of K that minimizes (20), which, from the standpoint of closed loop performance
as measured by mean-squared phase error, would be considered optimum is K + O,
independent of Rd. In fact, if one takes the limit of (20) as K + O (this must be done
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), the following result is obtained:

(22)

2Rd

Interestingly enough, the result in (22), which is now independent OJ L, is also
characteristic of the performance of the I-Q Costas loop [4] which is obtained as a low
SNR approximation to AL closed loop #3. It is important to understand that the
optimum closed loop performance of (22) results as a consequence of optimizing the
weight (gain) K for each value of L. If instead of doing this one were to fix the gain K
for all values of L (as suggested by the MAP estimation approach), then the closed loop
performance (as measured by ~ with fixed loop bandwidth) is suboptimum and inucwd
depends once again on L. One final note is to point out that the small SNR behavior
of (22) is identical to (19) the reason being that the value of K = 2R~ used in arriving at
(19) approaches the optimum value (K= O) as Rd + O.

The performance of AL closed loop #2 is difficult to obtain in closed form. Thus,
because of its unorthodox structure, we shall not pursue it in this paper. Instead we
move on to AL closed loop #3 whose performance has been obtained previously [6]. In
particular, the mean-squared phase error performance of this loop is given by

(23)

where X is a zero mean, unit variance Gaussian random variable and the overbar
denotes statistical averaging over X. A plot of S’ versus Rd is superimposed on the
curves of Figure 3. We first note that the performance as given by (23) is independent
of L. Furthermore, a comparison of the squaring loss as determined from (23) with
that calculated from (22) reveals that the performance of AL closed loop #3 is superior
to that of AL closed loop #1 with optimized gain for all values of Rd (see Figure 3 of
[6]). AS mentioned previously, if the hyperbolic tangent nonlinearity in Figure 2C is
approximated by a linear device (i.e., tanh xs x ), then the two loops have the same
performance.

What is particularly interesting for AL closed loop #3 is that even though the
performance in (23) is computed assuming a weighting coefficient in front of the I&D’s
in Figure 2C equal to 2=/NO , the behavior of this loop is not singular in the limit as
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R~ +m. Furthermore, it is natural to ask whether the above weighting coefficient is
indeed optimum in the sense of minimizing c:. To answer this question we proceed
as was done for AL closed loop #1, namely, we replace the weighting coefficient
2@/ NO in (6) by an arbitrary constant, say KO, (hence the same replacement is made in
the corresponding closed loop error signal of (11)) and proceed to optimize the
performance with respect to the choice of this gain.7 Making this replacement
produces a mean-squared phase error, analogous to (23), given by

(24)

where, as before, we have further normalized the weighting coefficient as

K ~KONO / 2~. Maximizing the squaring loss factor SL (i.e., minimizing ~) in (24)
results in K = 1 (K. =2@ /NO ) ~w all values of Rd. Thus, for AL closed loop #3, the
optimum gain from the standpoint of closed loop performance is precisely that dictated by the
open loop MAP estimation of O and the best performance is that described by (23).

We conclude our discussion of AL closed loops by pointing out that, in view of
the superiority of (23) over (22), AL closed loop #3 outperforms AL closed loop #1 for all
values of Rd.

4.0
4.1

Closed LooPs Motivated by the ML Approach
Structures

The ML approach to estimating the carrier phase, 0, is to maximize (rather than
average) p(r(l) di (t), 0) over all possible (2~) and equally likely data sequences yielding
the conditional pdf

(J2G LTp(r(t)le)  = ~~1 p(r(t)ldi(t),  6) = rnn~exp ~ r(f)di (t)sin(@Ct + e)df
)

=e’’p(/?ti&J:  00 )r(r)di(t)sin(coc? + O)df 49:(0)
(25)

where ; is the particular value of i corresponding to the data waveform d: (z: that
achieves the maximization in (25). Analogous to (5), ML open loop estimator #l is
obtained by finding the value of @ that maximizes q: (f?) of (25), i.e.,

7Again we note that this replacement does not effect the open loop estimation of O using (6).
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A block diagram implementation of this estimator is illustrated in Figure 4a.

Alternately, breaking up the integration over the entire observation into a sum
of integrals on each bit interval and recognizing that the data bits are iid binary random
variables, then (25) together with (26) evaluates to

ii= m~x-l  ~~~~exp-[~* ~~+l)~r(/)d~ sin(o.)Ct + t?)dr
o )

L-1

(~

2~ (k+lU’= m:x-’ ~ max exp —k=O  {d, } NO kT
r(t)dk sin(OCt + @)dt

)
L-1

[t-~

2~ @+l)T= m~-’ ~ exp
NO kT

r(t)sin(@Ct  + O)df
k=O 1 (27)

This estimator is analogous to (7) and is called ML open loop estimator #2~ A block
diagram implementation of this estimator is illustrated in Figure 4b.

q;(e).

which

Next, we obtain ML open loop estimates by maximizing the natural logarithm of
Using the product form of q;(0) as in (27), one obtains

-(~2~ (k+l)T(3= m~x-l in ~d~ ~exp ~
kT

r(t)~k sin(coct + O)dr
. 0 )

L-1
= m~x-’  in ~ max exp

~=o {4} [~~ ~~+’)Tr(t)dk sin(@Ct + O)df
o )

L-1

[I-J

2@ (k+l)T
= my-’ In ~exp

No kT
r(f) sin(fnet + 8)df

k=O 1

l–f

‘ - ’  z~ (k+l)T
= majx-l ~

NO kr
r(t)sin(~ct + O)dr

kaO (28)
is analogous to (8) and therefore called ML open loop estimator  #3. Its block

diagram implementation is illustrated in Figure 4c. “

Finally, we consider a fourth ML open loop estimator which is based on
maximizing the natural logarithm of q:(0) in its unpartitioned form of (25). This leads
to ML open loop estimator #4 which is defined by
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and illustrated in Figure 4d, Recognizing that the exponential function in Figure 4d
can be eliminated, we get the alternate and simpler form of Figure 4e, Although an
analogous AL open estimator could have been derived from in q(0) with q(tl)
defined in (4), we chose not to do so since there is no apparent advantage gained by
taking the natural logarithm of a sun of exponentials.

As was true for the AL case, it is important to emphasize that the four ML open
loop phase estimates as described by (26) - (29) are identical. Thus, from the standpoint
of finding the optimum open loop phase estimate, it makes no difference which of the
four structures in Figure 4 is implemented, i.e., they all yield the same performance.
Again we shall see that this same statement is not true when considering the
performances of the closed loops motivated by these four different ML formulations.

A closed loop phase synchronization structure based on ML open loop estimator
#1 is illustrated in Figure 5a where, in accordance with the discussion given in the
introduction, the error signal, e, is given by [see Eq. (26)]

e A ‘q$(e)
[~
2~ LT=-=exp — ]~

2@ J-T
dtl NO O

r(t)d:  (l)sin(~ct  + O)df x  —
No o

r(t)d:  (f) COS(Oct + O)dt

(30)
Analogous closed loop phase synchronization structures corresponding to ML open
loop estimators #2, #3, and #4 are illustrated in Figure 5b, c, and d where the error
signals are respectively given by [see (27) - (29)]

L-1

( 1

2~ (k+l)T
e=~exp ~ )  :~l;+’)’k~ r(t) sin(aCt + O)dt xx r(t)di  COS(@ct  + 6)dt

k=O o

{J

2@ W+lVdl = s g n  —
No kT

r(t)sin(coct  + 8)dt
}

(31)

(32)

(33)

Analogous to the terminology used for the AL case, we shall refer to the four closed
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loop structures in Figure 5as MLclosed/oop #l, #2, #3, and #4. Itisworthy of note that
ML closed loop #3 is identical in form to the I-Q polarity-type Costas loop [5].8 We
recall that, in the AL case, the I-Q polarity-type Costas loop is obtained only as a high
SNR approximation to closed loop #3.

4.2 Performance

An analysis of
for the mean-squared

r

the closed loop performance of Figure 5a
phase error given by (see Appendix A for

II ‘2i~(m)exp{(8Rd(L-m)}

1[‘;=— L

i ~PO(~~L- 2rn)exp{R,(3L-4rn)}]
2

ml)

Al=—

PSL

(1L~(m)= m pr(l–po)~-m, p. =+erfcfi

results in an expression
the derivation)

(34)
As was true for the analogous AL closed loop (see Figure 3), the mean-squared

phase error of ML closed loop #1 as given by (34) becomes unbounded as Rd ~ m. This
singular behavior can again be remedied by replacing the 2@/ No coefficient in front
of the I&D’s in Figure 5a by an arbitrary constant, say K. which remains finite as NO –) O.
With this replacement, the mean-squared phase error now becomes

where, as

{[ [ 11}L2~~(m)exp 2K(L -  2m)+  K* ~
M.O d

[ { [ ( )1}1
2

~Po(m)(L-2m)exp K(L-2m)+K2 --&
In. o d

gl

PSL

(35)

efore, we have further normalized the weighting coefficient as

K qm)KoT . As long as K. (or equivalently K) is finite (which would be the case in
a practical implementation of the ML closed loop scheme), the large SNR asymptotic
behavior of ML closed loop #1 is

%’he L-fold accumulator that precedes the loop filter can be absorbed into the loop filter itsdf by
renormalizing  its bandwidth. Thus, when making comparisons with analogous configurations, this

accumulator can be omitted,



L’ ~Po(rn)exp{[2K(L  - 2tn)]}
In. o

[~ Po(m)(L - 2nz)exp{[K(L - 2rn)]}12
LLu=o J

(36)

as one would expect. What is indeed interesting is that, u H like the AL case, the value of
K that minimizes (35), which from the standpoint of closed loop performance as
measured by mean-squared phase error would be considered optimum, is not K –+ O,
In fact, for each value of Rd and L, there exists an optimum value of K which
unfortunately cannot be determined in closed form. Nevertheless, the optimum values
of K can be found numerically as a function of Rd by maximizing S~ as determined
from (35) for each value of L. The results are illustrated in Figure 6. The
corresponding values of (SL )~, are plotted versus Rd in dB in Figure 7 for the same
values of L as in Figure 6. Also illustrated in Figure 7 is the value of S~ corresponding
to K + O which is determined from (35) as

~(1  -2p)-2 = ;(erf’@J-’]im~ =  (%)0  =  ~ + (S~)O = erf’~ (37)
K-+0

and which is indepen~ent  of the observation length L, Since the optimum value of K is
always greater than zero (see Figure 6), then (37) serves as a lower bound on the
squaring loss performance of ML closed loop #1. Other reasons for including this
limiting squaring loss behavior in Figure 7 will become apparent shortly when we
consider the other ML closed loop configurations.

From Figure 7 we observe that the performance of ML closed loop #1 becomes
worse with increasing L, i.e., L = 1 gives the best performance. Also in the limit as
L + 00, the optimum value of K approaches zero independent of Rd. Thus, the
limiting performance for L +00 is also given by (37).

As in the AL case, the performance of ML closed loop #2 is difficult to obtain in
closed form and because of its unorthodox structure we shall not pursue it in this
paper. Moving on to ML closed loop #3, we previously identified this as being identical
in form to the I-Q polarity-type Costas loop. Hence, its performance is independent of
L and is given by (37). Furthermore, it is straightforward to show that the performance
of ML closed loop #4 is also independent of L and given by (37). Thus, we see that of
the three ML closed loops (#1, #3, #4) whose performance has been evaluated, ML closed
loop #1 is superior to the other two which have performances that are identical and
equal to that of the former in the worst case (L + 00).



Perhaps
obtained when

16

the most interesting result of all of what has been discussed thus far is
the performance of the best ML closed scheme (i.e., #1) is compared with

that of the best AL scheme (i.e., #3), the I-Q MAP estimation loop which heretofore has
stood as the pillar of performance among BPSK tracking loops. This comparison is
illustrated in Figure 8 where the squaring loss is plotted versus Rd for the two
schemes. We observe that for small values of Rd , as is encountered in systems
employing a combination of low rate codes [1 O] and antenna arraying [11], ML closed
loop #l outperforms the I-Q MAP estimation loop which itself outperforms the well-known I-Q
Costas loop and I-Q polarity-type Costas loop.

4.3 Loop S-Curves

It is of interest to examine the S-curve behavior of ML closed loop #1 and
compare it with that of ML closed loop #3 and AL closed loop #3. The equation
describing the loop S-curve, q(o), of ML closed loop #1 is derived in Appendix A as
Eq. (A-9) with the special case of L = 1 (already shown to yield the best tracking
performance) given by Eq. (A-1 O). Figure 9 illustrates plots of q(~) versus @ over one
cycle of z radians for Rd = -5, 0, and 5 dB, respectively, where in each case, K has been
chosen equal to the optimum value as determined from Figure 6. In the limit of small
and large Rd, the S-curve approaches the following functional forms:

{

sin2@, small Rd
M@) = (38)

sin @ x sgn(cos ~), large R~
These limiting forms are identical to the same limiting behavior of the S-curves
corresponding to ML closed loop #3 – the I-Q polarity-type Costas loop, and AL closed
loop #3 – the I-Q MAP estimation loop.

5.0 Conclusions

Motivated by the
number of closed

theory of MAP carrier phase estimation, we have developed a
loop structures suitably derived from maximum-likelihood (ML) and

average-likelihood (AL) functions. Several of these structures reduce to previously
known closed loop carrier phase synchronizers while others appear to be new. Of
particular interest is one of the ML structures which, when properly optimized, gives
improved mean-square phase error performance over the other ML and AL structures.
The improvement is largest at low symbol SNR and is thus quite significant in
applications that involve a combination of low rate coding and antenna arraying such
as the NASA/JPL Galileo mission to Jupiter [10, 11]. We leave the reader with the
thought that the structures proposed in this paper are not exhaustive of the ways that
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closed loop phase synchronizers can be derived from open loop MAP estimation
theory. Rather they are given here primarily to indicate the variety of different closed
loop schemes that can be constructed simply from likelihood and log-likelihood
functions.
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Appendix A

Derivation of the Closed Loop Tracking Performance
of ML Closed Loop #l

Consider the closed loop in Figure 5a whose error signal, e(t), at time t = LT is
characterized by Eq. (30) with 2~ / NO replaced by KO, that is

(Je=exp KOO
)

~~r(t)d~ (t)sin(@ct  + O)dt x KOJ~r(t)dl  (t)cos(@Cl  + O)dt (A-1)
Substituting r(t) of (1) into (3o) results in

[rs LT
e = exp KO — (J )

d(f)d~ (f)df cos @ + KOj~~n(f)d:  (?)sin(cOCt  + O)dt20 \ Y
n. ‘1

(A-2)
where n: and n; are zero mean Gaussian random variables with variance
~; = cr~l = K~LTNo / 4. In view of the rectangular pulse shape assumed for the

LTtransmitted data waveform, d (t), in (2), the correlation d(t)d:  (t)u’t in (A-2) can be
~o

L-1
expressed in terms of the cross-correlation D; = ~d,d,, defined in (14) by1k=o

j:k)d:(t)d,=7’D,
1

(A-3)
Substituting (A-3) in (A-2) and normalizing n: and n; to unit variance Gaussian
random variables, N, and NC, respectively, we getl

e=.xP{Ko&TDc.sfP+KO/~N,}x[Ko~TDsin@+KO/~NC)  (A-4)

Introducing the further normalization K = KoT~  (note that when ~. =2@/ No,

lFor simplicity of notation, we shall drop the ; subscript on D since all that is needed in what
follows is the fact that D is a binomially  distributed random variable which takes on values

(L-z?l), m = o, 1,2, . . . .
( )

L
L with probability P(m)= p“’(1 - p)L-m, p = ~erfc(~cos~),

m



i.e., the gain suggested by the open loop MAP estimation theory, then K = 2R~),  (A-4)

becomes

{ lEslx(KDsin’+Kl%cl  ‘A- ’ )

e =exp KDcosip+K

Let q(@) denote the signal component (mean) of the error sample e. Then,
because of the independence of N~ and Alc, we have

q(@l=Ksin@[Dexp{KDcos@+K@~N* (A-6)

where the overbar denotes statistical averaging over D and Ns. Performing first
the statistical average over Ns gives

exp{K~J~=exp{K2-&} (A-7)

Thus, (A-6) simplifies to

( { }
T?(@) = Ksin @ Dexp{KDcos@}D)exp  K2 --& (A-8)

d

Finally, averaging over the binomially-distributed D, we get

{
q(@) = Ksin#~Wn)(L-2m)exp  K(L - 2m)cos@  + K2&

}
(A-9)

m.O d

which represents the S-curve of the loop. As an example, for L = 1, (A-9) evaluates
to

q(~) = 2Kexp
( )
~ sin @[(l – p)exp(Kcos@)-  pexp(-Kcos@)] (A-1O)

d

which, using the definition of p, is periodic in @J with period z

The slope of the S-curve at ~ = O is need for computing the closed loop
mean-squared phase error performance. Differentiating (A-1 O) with respect to @
and evaluating the result at @ = O gives

K g dq($$)
n

{
= K~Po(m)(L–2rn)exp  K(L - 2rn)+ K2&

de 1*=” In=l) d

where Po(m) is the binomial pdf of D evaluated at $ = O, namely,

(A-II)



()LPO(m) = m P&(l-PO)~-m, P .  =~erfcJT

The noise component of e evaluated at @ = O is

IV=exp{KD+K@8}x

which is zero mean and has variance

Using (A-7) to evaluate the average over N~, we get

“=K2($)ex’(2KGw’-’
‘K2(&)i!p0(m)exp{2K(L-2m)+K23

(A-12)

(A-13)

(A-14)

(A-15)
Since e(f) is a piecewise constant (over intervals of length LT) random process
with independent increments, its statistical autocorrelation  function is triangular

‘ and given by

(A-16)

where (.) denotes time averaging which is necessary because of the cyclostationarity
of e(t). As is customary in analyses of this type, we assume a narrowband loop, i.e.,
a loop bandwidth Z3L ccl/T. Then, e(t) is approximated as a delta-correlated
process with effective power spectral density

$~j- RJt)dr=LTa; (A-17)--
Finally, the mean-squared phase error for the closed loop is

(A-18)

which upon substitution of (A-11) and (A-17) results in Eq. (35) of the main text.
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Table I

Useful Properties of the Correlations Di and Dij
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